Rachel J. Morton
Syntax Extensions and Extensible Languages:

What they are and some examples of them using Java
Linguists say that syntax is the set of rules used to create well formed, grammatically correct sentences (Halliwell, 2005). This coincides perfectly with the Computer Science definition of syntax. This definition is, “a form or structure of the expressions, statements, and program units.” (Battig, 2006). This structure in a program is a set of rules, just like natural languages syntax. These rules make sure that the expressions, statements, functions etc. are all well formed and grammatically correct in the language. With natural languages, you can’t change the syntax of a language. You can change what a word means, but not the syntax. You can, however, change the syntax in programming languages. The way you do this is with something called a syntax extension.
There are a few different types of syntax extension: a new macro (Notley, 1971), new local syntax (Notley, 1971), or a new function (Notley, 1971). Some people disagree about whether a new function is truly a syntax extension or not. Macros aren’t technically syntax extensions, either. They do, however, allow programmers to incorporate syntax extensions into their programs (Bachrach, 2001). They can be defined either at the “top level”(Bachrach, 2001), a.k.a globally, or inside of a class, e.g. in Java inside an Object. Syntax extensions are what make programming languages so that they can have new constructs or other features (Wyk, 2006; Baker, 2002). They can also take domain specific languages, like SQL, and embed them in languages like Java (Baker, 2002; Parson, 2000). While all of these things are good, of course, there are some things that are not so good about them. First of all, it can make the code harder, if not impossible, to read (Huang, 2006). Second, programs are complicated enough without factoring in new syntax extensions (Huang, 2006). If a syntax extension was added, it could either make a program even more complicated (Huang, 2006), or the extension would be limited in what it could be used for (Huang, 2006). Neither one of these possibilities is good.
Languages that are extensible must have certain characteristics. Probably the most important of these is you need to have a syntax to define the new syntax you want to add (Perlis, 1969). A programmer needs to be able to define the syntax of the syntax extension he/she is writing so that the program understands it. Java can do this through a facility called the Java Syntax Extender or JSE (Bachrach, 2001; Wyk, 2006). This uses the types of macros found in Lisp to apply the syntax extensions to Java (Bachrach, 2001).
A syntax extensible language also needs to have some kind of pattern matcher (Perlis, 1969). JSE has this, and, combined with the abilities of Java itself, gives some advantages over other syntax extensible languages. For example, in Java you can package up code to use later. When you add a syntax extension with JSE, you can do the same thing with the extension (Bachrach, 2001). This means you can reuse your extensions. JSE makes a distinction between implementing a syntax extension and using one (Wyk, 2006). Syntax extensions have to be implemented by “a domain-expert feature designer” (Wyk, 2006). They can be used, however, by all Java programmers (Wyk, 2006). It’s very important with JSE that programmers don’t have to know all the implementation details, a.k.a, the syntax extensions are abstracted (Wyk, 2006).
There are other versions of Java that allow for syntax extensions. They both have their own ways of accomplishing this as well as their own pros and cons.

Maya is one other version of Java that supports syntax extensions. It, like JSE, uses macros to help with the integration of syntax extensions into Java (Baker, 2002). However, unlike JSE, with Maya the programmers themselves can write the syntax extensions (Baker, 2002). Maya treats syntax extensions like functions (Baker, 2002) and any Computer Science major who has just completed their first semester computer science course knows how to write a function. Maya also requires things called multimethods to provide the semantics for the syntax extensions (Baker, 2002). In Maya, syntax extensions are called Mayans (Baker, 2002). Unlike the Java that is taught to first-year students at Saint Mikes, however, Maya is a compiled language (Baker, 2002). In this way it is more like C and C++. The Mayans are plugged into the rest of the code after they have been compiled (Baker, 2002). Then they are used when the rest of the code gets compiled, but the Mayans aren’t compiled a second time (Baker, 2002).
So how do the syntax extensions get attached? It involves using special languages known as extension languages. These often are used just for one syntax extension. According to Dale Parson of Bell Laboratories, an extension languages is “an interpreted programming language designed to be embedded in a domain specific framework.” (Parson, 2000). These extension languages are then able to connect to other programming languages like C++ and Java. (Parson, 2000). This is probably how SQL came to be embedded in Java. I will look at two different language extensions: Luna and AspectJ.
The first extension language, Luna, deals with issues around sharing and controlling information (Howblitzel, 2002). It uses pointers to make it so that tasks running on the same computer can share information without trouble (Howblitzel, 2002). It helps resolve issues like system code continuing to run when the program that started it is terminated (Howblitzel, 2002).
The other Java extension language, AspectJ, is an Aspect Oriented Programming language. (Bravenboer, 2006). It also is a compositional language, which means it’s made up of other programming languages, each with a different type of syntax (Bravenboer, 2006). This makes it tricky to compile (Bravenboer, 2006). Not only that, but Aspect Oriented Programming is still being explored and as new things come up, AspectJ will have to be able to work with syntax extensions itself (Bravenboer, 2006). It my not actually have to have extensions attached to itself, as we will see in a moment, but it will have to work with them.
Thus it goes around in circles. First there were syntax extensions. These were then used to create extension languages. Now the extension languages are in need of being able to work with syntax extensions.

Which is where Meta-AspectJ comes in. It is a way for AspectJ, an extension language, to be able to work with syntax extensions (Huang, 2006). Meta-AspectJ is different from JSE and Maya. Instead of having to have the syntax extensions written into the program by a programmer, Meta-AspectJ takes information given to it about the needed extension and returns the AspectJ code to fulfill the requirement (Huang, 2006). In other words, Meta-AspectJ does not allow syntax extensions to be written, it actually writes the extensions in AspectJ to fit the needs specified in the program. These are then attached to the programmer’s code This code is compiled by the AspectJ compiler and connected to the original program (Huang, 2006). The only problem here is, of course, debugging since the code for the extension is generated for the programmer (Huang, 2006).
So what does this mean to the Java programmer? It means that there are ways to change Java so that it can accomplish more things. If a programmer uses Java Syntax Extender, they won’t be able to add the new features they want themselves. They will have to either wait and hope that the feature will be added or contact a person who can write the code for it and ask them to do so. There is a possibility that the programmer is one of the people who can write the code for syntax extensions in JSE. Then, of course, they would be able to do write the code for the syntax extension themselves. If a programmer uses Maya, they will be able to add the feature that they want themselves.

Syntax extensions also show how some of the features of Java have come about: like embedded SQL, or any embedded languages which are called domain specific languages. These were added by writing extension languages for the embedded language the programmer wanted. These can also be used in areas like sharing pieces of code and other information.
Lastly, syntax extensions show that computer languages, unlike spoken languages, can change. It isn’t just that new languages come out of old ones like Java came out of C++. The programming languages themselves can actually change. Not only that, but they are constantly changing. Programming languages need to keep up with the latest technology so that programmers can do the same. 
